NORTH DAKOTA DEPARTMENT OF TRANSPORTATION

MATERIALS AND RESEARCH DIVISION

Experimental Study ND 98-06

Fabric Reinforced Backfill Under Approach Slabs

Final Report

PROJECT NH-4-002(051)138

August 2004

Prepared by

NORTH DAKOTA DEPARTMENT OF TRANSPORTATION

BISMARCK, NORTH DAKOTA Website: http://www.discovernd.com/dot

DIRECTOR

Dave A. Sprynczynatyk, P.E.

MATERIALS AND RESEARCH DIVISION

Ron Horner

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION													
EXPERIMENTAL PROJECT REPORT													
	EXPERIMENTAL PROJECT NO.								CONSTRUCTION PROJ NO			LOCATION	
EXPERIMENTAL PROJECT	la 1 -	ATE	Y EAR	1	NUMBE	R SURF		ı NI	H-4-002(05 ⁻	1)138		Ward County	
		ND	98	-	06			8	,	,		,	
	EVALUATION FUNI	DING								NEEP NO.	PR	OPRIETARY FEATURE?	
	1 x HP&R				3	DE	MON	ISTR	STRATION			Yes	
	48 2 x CONSTRUCTION 4 IMPLEMENTATION 4						49	51	X No				
SHORT TITLE	TITLE Fabric Reinforced Backfill Under Approach Slabs												
THIS FORM	DATE MO.			YR. REPORTING									
	140	05	(02 1 INITIA			AL 2 AN			ANNUAL	ANNUAL 3 X FINAL		
	KEY WORD 1 145 BRIDGESUBSTRUCTURES KEY W 167								/ORD 2 APPROACHES				
KEY WORDS	KEY WORD 3 KEY 211						WORD 4						
	UNIQUE WORD						PROPRIETARY FEATURE NAME						
	233 BRIDGE APPROACH 255												
CHRONOLOGY	Date Work Plan Approved	Feature structed:				Until:					Date Evaluation Terminated:		
	02-1998 09-19			998 09-2008			2008					08-2004	
	277 281			285					289 293			293	
	QUANTITY OF UNI (ROUNDED TO WI	BERS)	UNITS				UNIT COST (Dollars, Cents)						
QUANTITY AND COST	5327.14			1 LIN. FT 2 SY 3 SY-IN 4 CY			5 TON 6 LBS 7 EACH 8 X LUMP SUM			306			
AVAILABLE	297 305 CONSTRUCTION PERFORMANCE				<u> </u>	FINAL							
EVALUATION REPORTS	X X X								X				
	CONSTRUCTION PROBLEMS					PERFORMANCE							
EVALUATION	1 X NONE 2 SLIGHT 3 MODERATE 4 SIGNIFICANT 318 5 SEVERE				1 EXCELLENT 2 GOOD 3 X SATISFACTOR 4 MARGINAL 5 UNSATISFACTO					RY			
APPLICATION	1 ADOPTED AS PRIMARY STD. 4 PENDING 2 X PERMITTED ALTERNATIVE 5 REJECTED (Explain in remarks if 3, 4, 5, or 320 3 ADOPTED CONDITIONALLY 6 NOT CONSTRUCTED						remarks if 3, 4, 5, or 6 is						
REMARKS	321 The R1 reinforcement fabric used to wrap the select backfill failed to meet strength specifications, but was not removed. A drop in height from the asphalt to the approach slab, causes unnecessary dynamic impacting of the approach slab and bridge. Settlement at the beginning of the approach slabs after 5 years was 3.0" for the Experimental Section and 1.6" for the Control Section. This was after maintenance patches were applied to reduce the bump. The approach slabs were mudjacked in 2003 to original elevations.												

Experimental Study ND 98-06

Fabric Reinforced Backfill Under Approach Slabs

Final Report

NH-4-002(051)138

August 2004

Written by Mike Marquart

Disclaimer

The contents of this report reflect the views of the author or authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not reflect the official views of the North Dakota Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Table of Contents

Background	1
Objective	2
Location	2
Project History	4
Traffic	4
Rims Historical Data	4
Design	5
Construction	7
Cost.	13
Five Years and Final Evaluation	14
Summary	29
Recommendation	30
Appendix A	
Project plans and notes	A-1 to A-10
Appendix B	
Experimental approach slab details	B-1 to B-2
Change Order	B-3 to B-5
Select backfill worksheet, concrete design, cylinder tests, and final	B-6 to B-8
Appendix C	
Flevations	

EVALUATION OF FABRIC REINFORCED BACKFILL UNDER APPROACH SLABS

Background

A bump often develops at the ends of a bridge near the interface of the abutment and the embankment or if an approach slab is used, between the end of the approach slab and the embankment. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operations, and reduction in a transportation agency's public image are all undesirable effects of these uneven irregular transitions. A bump that is allowed to persist increases the chance of damage to the bridge deck from the dynamic impact of vehicles. These impact loads have been estimated to be four or five times larger than the static loads; "Hu, Y., T. Wu, C. E. Lee, and R. Machemehl, *Roughness at the Pavement-Bridge Interface*, Report No. 213-1F, Texas State Department of Highways and Public Transportation, Austin, Texas (August 1997) 157 PP". Damage to the bridge deck can also be caused by snow plows in the winter. In addition, the bump can cause damage to vehicles.

The bump at the end of the bridge is a complex problem involving a number of components, including the natural soil on which the embankment and the abutment are built, the approach fill material, the foundation type used for the bridge abutment, the abutment type, the structure type, the bridge/roadway joints, the approach slab, the roadway paving, and the construction methods. The problem affects twenty-five percent of the bridges in the United States, approximately 150,000 bridges. Each year, the amount of money spent on this problem nationwide is estimated to be at least \$100 million. Survey results indicate that integral bridge abutments appear to be a special case where a bump is consistently created resulting from temperature cycles and the associated compression and decompression of the approach fill by the abutment wall.

Objective

The conventional method of constructing the embankment behind an abutment wall has not prevented the bump at the end of the bridge to any great degree. The objective of this experimental feature is to build a better foundation under the approach slab that will eliminate the bump at the interface of the approach slab and the asphalt pavement. See Figure 1

Figure 1 Proposed detail of experimental feature

Location

This experimental feature is located on the Burlington Separation Bridge Project NH-4-002(051)138. It will be constructed on the approach end of the bridge in the eastbound lanes. The approach slab on the bridge of the westbound lanes will be used as a control. Project plan sheets and typical sections are found in Appendix A.

Project History

Traffic

Year		Pass>Car	Trucks	Total	Flexible ESALs - Two Way		
Construction	1998	4,750	550	5,300	440		
Evaluation	1999	4,750	550	5,300	440		
Evaluation	2000-2001	4,800	600	5,400	505		
Evaluation	2002-2003	3,765	795	4,560	645		

Table 1

NDDOT Roadway Information Management System (RIMS) Historical Data

Year	Thickness	Туре	Width
1979		Structure —Steel Culvert (33x22x326)	
1979		Grade	48'
1979		84 feet c-c	
1980	8.0"	Aggregate Base	42'
1980	2.0"	Hot Bituminous Pavement 120-150	30'
1980	1.5"	Hot Bituminous Wearing. Course 120-150	27'
1992	1.0"	Milling	24'
1992	5.0"	Hot Bituminous Pavement 120-150	28'
1992		Finished Roadway Width	37'

Table 2

Design

The design carries the select backfill at a 20:1 taper from the abutment all the way back until it intercepts the pavement section. The new design shows installing a void form against the abutment and building what is essentially a retaining wall against the void form. The form is later washed away to leave a 3" to 4" void that will allow the abutment to move without affecting the select backfill. Geotextile reinforcement fabric is to be used and the select backfill is to be compacted in one foot layers. The geotextile fabric is also required to be wrapped back on the sides with each foot of fill. A drainage system behind the abutment is also provided.

Design details showing the fabric reinforced backfill under the approach slab are located in Figures 2 and 3. They are also shown in Appendix B. This experimental feature was change ordered on to project NH-4-002(051)138. The change order 2p is located in Appendix B.

Figure 2 Detail for Fabric Reinforced Backfill under the Approach Slab

Figure 3 Detail for Fabric Reinforced Backfill under the Approach Slab

Although there is no typical drawing for the Control Section, compaction and density control for the Control Section was in accordance with Section 203.02 G of the Standard Specifications T-180. The embankment is placed in horizontal layers not exceeding 12 inches and compacted to the specified density before the next layer is placed. The soil layers are compacted to 85% of the maximum dry density as determined by AASHTO T-180. Soil moisture at the time of compaction shall be not less than the optimum moisture content and no more than 5 percentage points above the optimum moisture content.

Construction

Construction began on March 30, 1998 and was opened to traffic on October 27, 1998. Ron Harris Construction removed the common excavation waste material over the Structural Plate Pipe (SPP) tunnel and rough graded the 20:1 taper section at the same time. The 20:1 sections were roughly graded for the approach and end slabs. Industrial Builders then excavated for the abutments and fine graded the 20:1 sections. Abutments were poured and grading was performed for the installation of the 4" drainage system.

The drainage system was installed according to the plans. A 4" PVC perforated pipe was used and covered with size 4 drainage rock which was protected by D2 type geotextile fabric. The drainage rock that was used with the perforated PVC pipe was installed at the same time as the select backfill was installed. There was no way the drainage rock could be installed without bringing the select backfill up with it at the same time. The non-perforated PVC pipe lengths had to be adjusted to fit the existing slopes around each abutment.

The following pictures show construction of the experimental section under the approach slab of abutment 1 of the eastbound Bridge.

Photo 1 – Tacking R1 fabric before placement of the next one foot of select fill.

Photo 2 – Select fill placed over fabric wrap.

Photo 3 – Cutting void form for installation against abutment wall.

Photo 4 – Asphalt meets approach slab of the control section.

A class 5 material was tested and met the requirement for select fill. The test worksheet is located in Appendix B. The 3" void material was not available in such small quantities and an alternate 4" void form was used.

Geotextile fabrics were used to wrap the drainage system and in the select backfill. A D2 type filter fabric was used to wrap the 4" drainage system. R1 reinforcement fabric was used to wrap each 1' lift of select backfill until the required height was reached.

The approach slab was formed and poured over the experimental section at the same time as the bridge deck. The approach slab is 14" thick. Appendix B contains the concrete proportion design and compression test of a concrete cylinder for the approach slab. The roadway was paved with asphalt up to the approach slab. Photos were taken after the project was completed. Photos 4 and 5 show the approach slab of abutment 4-westbound bridge (control section). Photo 5 shows that the slab is in good condition and that the joint looks good.

Photo 5 – Approach slab meets bridge in the control section – Westbound Bridge.

Photo 6 shows a view looking west at the experimental approach slab of the eastbound bridge of the Burlington bridges. These bridges have been open to traffic for about one day. Photo 7 shows the beginning of the approach slab and surface tining. A slight dip was noticed where the asphalt meets the concrete, but appears not to affect the ride as observed from the side of the road.

Photo 6 - Overview of experimental approach slab – Abutment 1 Eastbound Bridge.

Photo 7 – Asphalt meets approach slab of the experimental section.

Photo 8 shows where the approach slab on the left side of the photo meets the bridge on the right.

Photo 8 – Approach slab of the experimental section meets the bridge.

An elevation survey was conducted of the finished experimental approach slab and transition. This is to aid in the annual evaluation of the experimental project. A copy of the survey is located in Appendix C. The elevation survey did not include the control section in 1998.

Cost

The experimental section required 4 feet of select backfill which is about 2.5 feet less than would have been used in a standard design. The following is a break-down of the costs of the experimental section approach slab and a control or a conventionally built approach slab.

Abutment 1 - eastbound bridge entrance approach slab (Experimental Project)

Select Backfill (4 feet @ 20:1) = 337.7 CY x \$12/CY	\$	4,052.40
Underdrain Pipe - PVC Perforated - 4in = 68 LF x \$14/LF	\$	952.00
Underdrain Pipe - PVC Non-perforated - 4in = 54 LF x \$14/LF	\$	756.00
Cost of fabric, extra drainage rock and void form	\$	5,327.14
Cost subtracted for failing fabric	<u>\$</u>	-735.1 <u>5</u>
Total	\$	10,352.39

Abutment 4 -westbound bridge entrance approach slab (Control)

(5.5' depth @ 20:1) Select Backfill = 474.8 CY x \$12/CY	\$ 5,697.60
Underdrain Pipe - PVC Perforated - 4in = 68 LF x \$14/LF	\$ 952.00
<u>Underdrain Pipe - PVC Non-perforated - 4in = 47.5 LF x \$14/LF</u>	\$ 665.00
Total	\$ 7,314.60

Five Years and Final Evaluation

The test and control sections were visited on 11/23/99, 12/06/00, 11/15/01, 11/20/02, and 10/03/03. The asphalt roadway was chip sealed in 1999. This chip seal added a little height to the roadway and made the slight bump where the asphalt meets the approach slab more severe.

During the summer of 2000, a contract project to mill bumps at bridges included this experimental section. The milling improved the general overall ride but did not completely remove the bump. Photo 9 shows that in the cold winter months a 1 inch gap opens up between the asphalt and approach slabs. A tape measure can be inserted to a depth ranging from 6 to 12 inches.

Photo 9 – Winter 1999 gap opening of 1 inch between asphalt and approach slab in the Control Section WB.

Photo's 10, 11, and 12 from years 1999 and 2000 show conditions that existed including bumps, gaps, and sealant failure.

Photo 10 – Experimental Section 1999 EB - asphalt to approach slab - dip.

Photo 11 - Seal failure - EB adhesion loss and punched down 1999.

This bump in the eastbound experimental section where the asphalt meets the approach slab has been getting worse each year. Photo's 12 and 13 were taken in November of 2001. The approach slab receives a dynamic load each time a loaded truck hits it at highway speeds. This puts a lot of stress on the approach slab.

Photo 12 – Shows drop from asphalt to approach slab in the outside wheelpath of the experimental section of approximately $^{3}\!4$ inch.

Photo 13 – Between wheel paths of driving lane – 1 $\frac{1}{2}$ " drop from asphalt to approach slab.

The approach slabs are settling as shown in photos 14 and 15. This measurement is taken at the end of the wing wall which is 14 feet from the abutment wall or 4 feet from the beginning of the approach slab.

Photo 14 – 1 3/8" drop from wingwall to approach slab. Experimental section Rt.

Photo 15 – Experimental section Lt. Side – or Passing lane side, the guard rail bolts show stressing at the wingwall due to settling of the approach slab.

An elevation survey was conducted in 1998 on the test section (EB) beginning at the bridge and continuing 100 feet back into the asphalt pavement.

The control section (WB) was included in the elevation survey in 1999. The difference in elevation at each location was determined from 1999 to 2003 data. The elevation data is located in Appendix C. These changes in elevation are shown in the following graphs. Notice that the drop in elevation in the eastbound roadway or experimental section is slightly less than the drop in the control section. The data averaged for years 1999, 2000, and 2001 show a decrease in elevation of 2.5" for the control and 1.6" for the experimental section. The average elevation decrease figured for 2002 and 2003 was 1.6" for the control and 3" for the experimental section.

Elevations are measured at five points across the roadway, 18 feet left of centerline, 12 feet left of centerline, centerline, 12 feet right of centerline, and 22 feet right of centerline. These five points have been graphed and are shown as follows. Overall, the experimental section has not prevented the bump from occurring at the end of the approach slab. The graphs show about a 1% difference in elevation drop between the experimental section and the control section. This was the difference as of June 2003. It must be pointed out that these elevation differences between the control and experimental sections keep changing due to maintenance patching to smooth the ride.

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Elevations for the control section were not collected in 1998. The graphs show that both sections, the experimental section and the control section, was consolidating up to the year 2000. The eastbound experimental section at all 5 points shows very little change in elevation from 2000 to 2001 except at the approach slab/asphalt contact. The control section is still showing consolidation at all 5 points.

In the experimental section, eastbound bridge, the asphalt is slightly higher than the concrete approach slab. This sudden change in elevation causes dynamic impacts by heavy vehicles and may be part of the reason it is still consolidating in 2001.

Mud Jacking Approach Slabs

The experimental feature to build a better foundation under the approach slab that would prevent the bump at the approach slab/asphalt pavement interface, has not been successful. The NDDOT thus included this experimental project in a contract to repair bridges and box culverts in 2003. The work included lifting the north and south approach slabs of the twin structures. The mud jacking was to lift the slabs to their original positions.

The 5 cross-section points of each section were plotted for comparison in graphs 6 through 19. The data representing 2003 is before mud-jacking and 2003A is after mud-jacking.

Graph 6

Graph 7

Graph 8

Graph 9

Graph 10

Graph 11

Graph 12

Graph 13

Graph 14

Graph 15

Graph 16

Graph 17

Graph 18

Graph 19

Summary

Spreading and compacting asphalt so it is level with the concrete approach slab is difficult. In this case, the asphalt after construction was slightly higher than the approach slab. The performance evaluation is based on the decrease in elevation over time.

The cross-section graphs show that roadway consolidation is still taking place in the control section; whereas the experimental section has stopped consolidating with exception to one location. The existing bump or dip in the experimental section at the approach slab/asphalt contact results in the application of dynamic load to the concrete approach slab by heavy vehicles. This dynamic loading may be contributing to the settlement at this interface.

The data averaged from the evaluation surveys conducted in 1999, 2000, and 2001 indicate that the average decrease in elevation was 2.5" for the control and 1.6" for the experimental section. The 2002 and 2003 evaluations show a decrease in elevation from the original to be 1.6" for the control section and 3" for the experimental section.

This experimental feature to build a better foundation under the approach slab that would prevent the bump at the interface of the approach slab and asphalt pavement, was not successful. The mud jacking of the approach slabs restored the slabs near their original elevations. Graphs 20 and 21 show the original approach slab elevations near the asphalt pavement interface for both eastbound and westbound bridges.

Graph 20

Graph 21

Recommendation

It is questionable whether the method used on this bridge project of constructing a bridge approach slab and embankment is the appropriate method to use to try and prevent the bump at the interface of the approach slab and embankment.

It is recommended that whatever method is selected for constructing the embankment behind the abutment wall, that emphasis be placed on compaction. Compaction seems to be the leading component attributing to the bump at the approach slab and roadway interface.

A better approach may be to wait a few years to construct the approach slab in order to allow time for settlement or equalization of embankment pressures.

Good planning and close attention to construction of the interface between the roadway and approach slab will better ensure a smooth transition.

RECTOR STATE PROJECT NO. 1907	COVERNING SPECIE ICALIDNS. Standard Specifications adopted by the North Dokoto Department of Transportation October 1991 Standard Drawings currently in effect and other Contract Provisions submitted herein 1 ENGTH UF PROJECT 0 284	END PROJ 465450 SEC 2 T-155N R-83W	DIRECTOR OF HIGHWAYS AND ENGINEERING HORTH DAKUTA DEPARTHENT OF TRANSPORTATION
NDRTH	DEFARIMENT UF IRANSFURIALIUM FEDERAL AID PROJECT PROJECT NO NH-4-002(051)138 IN WARD COUNTY STRUCTURAL, CRADING, SURFACING & INCIDENTIAL		U.S. DEPARTHENT DF TRANSPORTATION FEDERAL HIGHVAY ADMINISTRATION APPROVED DIVISION ADMINISTRATOR DATE
DESIGN DATA Average Baky 3200 Tracks 400 Tota 1160 Tracks 520 Tota	Herry Sight Bist for Desgn Speed (U	BEG PROJ 4,504-50 SEC 2 T-1558/ R-834	PAVING SECTION URBAN SECTION TRAFFIC SECTION RURAL SECTION RURAL SECTION RURAL SECTION RURAL SECTION TO SECTIO

1	9		FHWA STATE	FED A1D PROJ NO	SHEET
ESTIMATE	UF QUAN	UANTITES	B N D	NH-4-002 (051) 138	9
					_
SPEC CODE ITEM DESCRIPTION	TIND	NB-4-002 051)138			TOTAL
103 0100 CONTRACT BOND	L SUM	, ref			
201 0330 CLEARING & GRUBBING	L SUM	et 1			-
202 0105 REMOVAL OF STRUCTURE	L SUM				-
202 0132 REMOVAL OF BITUMINOUS SURFACING	SY	11,333			٠, ١
202 0170 REMOVAL OF CULVERTS-ALL TYPES & SIZES	LF	168			21,333
203 0101 COMMON EXCAVATION-TYPE A	č	3,149			168
203 0109 TOPSOIL	ដ	2,480			3, 149
203 0113 COMPON EXCAVATION-WASTE	ŭ	936 936			7,480
210 0101 CLASS I EXCAVATION	L SUM	r			956,85
210 0198 SELECT BACKFILL	TON	996			7 10
210 0201 FOUNDATION PREPARATION	ផ	7			e (
216 0100 WATER	H GAL	336			7
302 0120 AGGREGATE BASE COURSE CL 5	TON	15,213			136
A 401 0100 MC70 OR 250 LIQUID ASPRALT	GAL	4 823			15,213
N 401 0152 SSIH OR CSSIH ENULSIFIED ASPHALT	CAL	2 590			
408 0185 BOT BITUMINOUS PAVEMENT CL 29	TON	5,282			
408 0320 120-150 ASPHALT CEMENT	NOT	284			787 6
408 9605 CORED SAMPLE-BITUMINOUS PAVENENT	EA	20			187
420 0160 BLOTTER MATERIAL CL 44	NOT	S. S.			9 1
550 0215 CONCRETE BRIDGE APPROACH SLAB	SY	383 4			55
602 0130 CLASS AAE-3 CONCRETE	Ü	74B 6			
602 1130 CLASS AE-3 CONCRETE	ដ	675.2			6.18.0
	SY	2,116			
	LF	1,864			1.864
	LBS	189,582			189 587
612 0116 REINFORCING STREL-GRADE 60-EPOXY COATED	LBS	79 494			707 00
	æ	112			113
	LF	7,830			0 8 3 0
	47	594			764
	L SUM				
622 7001 DYNAMIC PILE TEST	ĕ	&			1 60
	L SUM	н			
764 0100 FLAGGING	METR	750			750
					_

C | Jessyn/Darsen | 1997 | 15 25 26 | 1997 | TIME | 12 47 45 |

RABRICO 970LSA1 LDS C WONWILD III VAN THE REST

SCOPE OF WORK This project consists of building two new also processes. Both bridges are 238' long with clear roadway widths of 40' GENERAL The cost of furnishing and placing preformed expansion joint filler, concrete inserts, tie wire, bar spacers, bar supports, and other miscellaneous items shall be included in the price bid for Class AE-3 and AAE-3 concrete REMOVAL OF STRUCTURE. The existing structure is a 33'-0" x 22'-5" x 356' S P with timber struts in the middle 144' of the pipe There is some fill dirt placed in the bottom of the S P P There is some fill dirt placed in the bottom of the S P P with an asphalt driving surface. The timbers shall be salvaged and remain the property of the NDDOT The timbers shall be neatly cut at the joints, removed, and transported to the Minot District yard of the NDDOT All other materials removed shall become the property of the contractor and shall be disposed of properly off of the right-of-way EXCAVATION Class I excavation, at the abutments, shall extend from the bottom of the footing to the upper limits as shown on the Detail at Abutment drawing EXCAVATION The excavation at the abutments, as shown, and the excavation required to build the piers shall be included in the lump sum bid item, "Class I Excavation" SELECT BACKFILL Select backfill shall meet the requirements of Section 816 03, class 3 The backfill shall be placed in layers of not more than 6 inches, moistened or dired as
SELECT BACKFILL Select backfill shall meet the of Section 816 03, Class 3 The backfill shall layers of not more than 6 inches, moistened or required, and thoroughly compacted with mechaniequipment.
BRIDGE APPROACH SLABS Mechanical finishing of the approsslabs shall be required A mechanical or hand-held transverse metal tine finish shall be applied Tining shistart 6" from the beginning and end of the approach slabs surface tolerance of 3/16" in 10 feet is also required
DIAPHRAGMS The diaphragm concrete shall be placed before the deck concrete, the concrete shall cure for at least 72 hours before deck placement SURFACE FINISH "D" SURFACE FINISH "D" SURFACE FINISH "D"
the inside and top surfaces of the barrier

SHEET	17	- <u>-</u> .							2-138 353L-2
FHVA KTATE FED AID PROJ NO	NH-4-002 (051) 138								2-138
	BURLINGTON SEPARATION	Toothed cast steel pile tips (ASTM A148 steel) shall be required on all pile driven	The pile length shown on the plans is for bidding purposes only. The difference between the final in-place quantity and the quantity estimated by the engineer, after the test pile has been driven, will be used to determine underrun or overrun payments.	SLOPE PROTECTION: The concrete slope protection will be limited to the cast-in-place type shown on Standard D-708-1	SHOP DRAWINGS CAD-generated shop drawings may be submitted on 11-inch by 17-inch detail sheets. The contractor shall submit the following shop drawings to the Construction office for approval	1 Prestressed I-girders	DESIGN STRENGTH F'C 3,000 PSI Cl. AE-3 Concrete F'C 4,000 PSI Cl. AAE-3 Concrete FY 60,000 PSI GR 60 Reinforcing Steel F'C 5,200 PSI Prestressed Girder Concrete	NOSING CONCRETE The nosing concrete material shall be an elastomeric concrete or a polymeric concrete that will provide a durable edge that can withstand live-load traffic without chipping or spalling The nosing concrete material shall be Ceva Crete 95, manufactured by E-Poxy Industries Inc , Elastomeric Concrete, as manufactured by the D S Brown Company, Sispec 900, as manufactured by Construction Materials Inc , Elastomeric Concrete as manufactured by Harris Speciality Chemicals Inc , or an approved equal The nosing shall be mixed and installed according to the manufacturer's recommendations The cost for the equipment, materials, and labor to install the nosing concrete on each side of the joint shall be included in the lineal foot bid item "Nosing Concrete"	
		622	622	708				930	

₹8 tð 40 LF ESTIMATED MATERIAL QUANTITIES LENGTH 19 - 7" 40 - 10 (ONE SLAB) 2-138 353L-26 19 - 7 2-9 ONE SLAB CONCRETE (C.Y.) SKEW ANGLE = 0 DEG APPROACH SLAB DETAILS 38 9 BURLINGTON SEPARATION € FIDERAL AD PROJECT NUMBER NH-4-002(051)138 25 87 l۶ 72 (EXIT END) BAR LIST A900 A901 A902 A903 4905 9900 MARK REINFORCING STEEL (LBS) \$90€ OUANTITIES
APPROACH SLAB
NOSING CONCRETE 7844 ž S NO THE ABOVE ESTIMATED MATERIAL OUANTITES ARE FOR INFORMATIONAL PURPOSES ONLY ALL MATERIALS INCLUDING CONCRETE REINFORCING BARS BACKER ROD POLYETHYLENE MEMBRANE SAW CUTTING SILICON SEALANT PREFORMED JOINT FILLER AND LABOR RECOURED TO BUILD THE APPROACH SLABS AND APPROACH SLAB BARRIERS SHALL BE INCIDENTAL TO THE PAY TIEM "CONCRETE BRIDGE APPROACH SLAB" NOSING CONCRETE SHALL BE PAID FOR AS A SEPARATE PAY TIEM. THE CONCRETE SHALL BE CLASS AE-3 AND THE REINFORCING STEEL SHALL BE GRADE 60 THE POLY-ETHYLENE MEMBRANE SHALL MEET THE REQUIRETIENTS OF AASHTO M121 4xA506 TUBA SURFACE FINSH "D" SHALL BE PEDUIRED FOR ALL SUPTACES OF THE CURB TRANSINONS STE APPROACH SLAB 1-0 B900 _6 - I 7A901 A-A 6A900 7. CI 4 ז כר 7/1 9 48900 Z-1 1 PREF JT FILLER 10 ST W 원ON 1 PREF JT FRLER
SHALL BE INSTALLED
BETWEEN BARRIERS 13-61/2" 108 ~ 106v2 ~ d5 03 98 7, 106 ٦. Ā 14 ш 17 SP @ 1-0" ~ 5A906 (TOP & BOT) 4 X A 505 s (TYP) 17 EO SP ~ 2-4B900 14 - 0-10 3/4" 17-7 (TYP) RAPPSLB1 970LS61 JDS c VagnVbritnitVrappslb1 agn Sep 19 1997 09 00 29 ELEVATION BOT) (TYP) SA902 (TOP PLAN 4A903 5A905 (10P & B0T) 3- 1-2-61 11/L² 1/L² 64900 ⋖ .Z- It 1-6 3/4"

A-9

Control Section

Detail for Fabric Reinforced Backfill under the Approach Slab Figure 3

SECTION A-A

NORTH DAKOTA DEPARTMENT OF TRANSPORTATION

SFN 11570

CHANGE ORDER

SHEET 1

CHANGE 20 CRDER NO 2C

PROJECT NH-4-302(051)138 COUNTY WARD COUNTY
FOR STRUCTURAL, GRADE, SURFACING, & INCID.

CONTRACTOR INDUSTRIAL BUILDERS, INC.

PO 80X 406

ORIGINAL CONTRACT AMOUNT \$ 1,545,380,52

FARGO, NO 58078

	OA	TE 07/08/19	98				
SPE:	CODE NO ITEM OF #ORK	TINU	ORIG + OR - PREYIOUS CHG QUANTITY	+ RO + YTITHAUD	UNIT PRICE	INCREASE TRUOKA	DECREASE AMOUNT
	DECREASE TO BID ITE4						
210	PARTICIPATING (NH FEDERAL FUNDS) 198 SELECT BACKFILL ADDED CONTRACT ITEM	TCN	366 300	-366 300	3 300		-7,728 OO
210 210	197 SELECT BACKFILL EXPERIMENTAL 200 SELECT BACKFILL	L SUM C./	0 000 0.000	1 000 1,706.000	5,227 140 12 000	5,327 14 20,472 00	

NET INCREASE OR DECREASE TO DATE 0 00 NON-PART TOTALS 25,799 14 -7,728 00 NCH-PARTICIPATING 0.00 0.00 PARTICIPATING 25,799.14 -7,728.00

DUE TO THIS CHANGE, THE CONTRACT TIME

MAY 3E REVISED IF THE MORK AFFECTS/AFFECTED THE CONTROLLING OPERATION.

E(PLANATION OF CHANGE IN PLAN RECOMMENDED

If the Rederal Runds authorized in the cost participation agreement with the local agency is exceeded and Rederal Runds are not available for this change, the local agency will assume the total cost of this change order.

SEE ATTACHED SHEET	7 0 00	// / -	
STATIFACTOR	<u>7-8-98</u> Datë	HAPProval Recommended PROJECT ENGINEER	7-8-98 ()Approved DATE
CITY/COUNT//OTHER OFFICIAL	DATE	Approvat Aecomenced OISTRICT ENGINEER	()Approved 7/8/98
REPRESENTING		Madroved FEBRIDAE MOI REST	DATE 7/9/98

NH-4-002(051)13

CHANGE ORDER 2P, 2C

Spec. Code

210 0197 Select Backfill - Experimental

Materials and Research requested an experimental project be installed on the approach slab by Abut #1 - Right Bridge. The experimental project requires an increase in Size 4 Aggregate and Type D2 Filter Fabric quantities. It also adds Void Form and Type R1 Geotextile Fabric. The following shows the allowable cost of labor, material and equipment, which compare favorably to average annual bid prices.

Labor

<u> </u>			
	Labor Hours		
	(1 operator, 1 carpenter foreman 2 laborers)	=\$56 65 per hour x 20 hrs	=\$ 1133 00
	H/W Benefits	=\$ 6 60 per hour x 20 hrs	=\$ 132 00
	75% Payroll Additive	·	=\$ 849 75
	Subsistence	=\$ 7 40 per hour x 20 hrs	<u>=\$ 148.00</u>
		Total Labor	=\$ 2361 75
Maten	<u>al</u>		
	Geotextile Fabric - Type R1	= 693 sy x \$0 88 per sy	=\$ 609 84
	Void Form and Freight	= 1 Lump Sum	=\$ 835 92
	Additional Size 4 Aggr	= 20 cy x \$18 00 per cy	=\$ 360 00
	Additional Type D2 Filter Fabric	= 67 sy x \$0 99 per sy	=\$ 66 33
	5% Sales Tax	=	=\$ 93 61
	15% Markup	=	<u>=\$ 294.85</u>
		Total Material	=\$ 2260 55
Equipt	<u>nent</u>		
	Ford A66 Loader	= \$30 71 per hr x 20 hrs	=\$ 61420
	Walk Behind Packer	= \$18 92 per hr x 4 hrs	=\$ 75 68
	Wacker Packer	= \$ 3 74 per hr x 4 hrs	=\$ 14 96
		Total Equipment	=\$ 704 84
		Grand Total	=\$ 5327 14

Spec.	Code

210 0198 Select Backfill - Ton210 0200 Select Backfill - CY

The Select Backfill Quantity in the plans was computed wrong. The original plan quantity was computed for the Select Backfill being installed just below the approach slabs, which have 20' lengths. The new plan quantity is computed with longer lengths, which are 122', 80' and two at 78'. This changes the quantity from 966 tons to 2559 tons.

Original Plan Quantity	966 ton x \$3 00 per ton	=\$ 7,728 00
New Plan Quantity	2559 ton x \$8 00 per ton	=\$20,472 00

The contractor removed Class 5 from under the SPP Tunnel He proposed to use this material for the Select Backfill The material was tested and passed for Select Backfill

The pay quantity for Select Backfill was originally to be paid for by the Ton Now it will be measured and paid for by the CY, in accordance with 210 04 C 2 of the Standard Specifications

2560 ton / 1 875 ton per cy = 1365 cy 1365 cy x 1 25 for shrinkage = 1706 cy 2559 ton x \$8 00 per ton (bid price) = \$20,472 \$20,472 / 1706 cy = \$12 00 per cy

Total Cost of the Select Backfill

\$12 00 per cy x 1706 cy =\$20,472 00

This price includes all labor, equipment and material necessary to complete the work

Project NH - 4 - 00	oz (051) 138		Cou	MY JARD				
Submitted By			Date	Received				
WAYDE S	WENSON		5	127/98				
Select Backs, 1	1							
rt Location				Wt	Ret.			
Material Reclaim	٥٠٦ ٥٠ له	(mm)	Ret			%	%	ND
Owner		(,,,,,	, .01	Non- Cum	Cum	Ret.	Pass	Scec.
		100	4"					
Sampled From		90	3 1/2"					
STOCK PILE		75		∅	<u> </u>	<u>a</u>	100	100
ate Sampled	Field Sample No	63	2 1/2					
5/27/98	1	50	2"		<u> </u>			
ab. No	Size No	37.5	1 1/2					
		25 0	1"	989	। पष्ठ ५			
		19.0	3/4"	198.7	2976			
Soundness % Loss -		160	5/91	1 224 6	522 2			
AASHT	O T-104 Tested By	12.5	1/2"	5432	765.7			
Specific Gravity -		95	3/9"	3716	11373			
AASH	TO T-85 Tested By	4 75	No 4	656 4	17937	38 Z	618	35-85
& Absorption -		2 36	No 8	530 1	2323 3	495	50 5	
AASH'	TO T-85 Tested By		No 8	2372 6	र्९वर द	WET = 49		
A. Abrasion (Grad) % Loss -		heck		1696 4	254 - 47	•	
AASHTO T-96 Tested By		Cngin		4/271		MOISTURE = 5 28 %		
Wt. Rodded LbJc I. (Kg/m³) - AASHTO T-19 Tested By		Fineness	Modulus	<u>!</u>			-TO T-27 Teste	
	O T-255 Tested By					ωc' -		
	O T-255 Tested By			Wt.	Ret.			ND
AASHT	O T-255 Tested By	(mm)	Ret.	Non-	Ret.	ω c -	o C1 %	
AASHT	O T-255 Tasted By	1		Nan- Cum	Cum.	₩ C =	%	ND
AASHTI SAND Pit Location Owner	O T-255 Tested By	(mm) 9 5 4 75	Ret.	Non- Cum	7	₩ C =	%	ND
AASHTI SAND Pit Location Owner	O T-255 Tested By	9 5 4 75	3/8"	Nan- Cum	Cum. ර ර රු	₩ C =	%	ND
AASHTO SAND Out Location Cwner Sampled From		9 5 4 75 2 36	3/8 No 4	Nan- Gum な	Cum. Ø	₩ C =	%	ND
AASHTO Pit Location Cwner Sampled From	O T-255 Tested By Freld Sample No	9 5 4 75	3/ ₈ * No 4 No 8	Nan- Gum な	Cum. ර ර රු	₩ C =	%	ND
AASHTO SAND Pit Location Dwner Sampled From Date Sampled		9 5 4 75 2 36 2 00	3/8* No 4 No 8 No 10	Non- Cum Ø	Cum.	₩ C =	%	ND Spec.
AASHTO CAND Pit Location Cwner Sampled From Date Sampled		9 5 4 75 2 36 2 00 1 18	3/ ₅ * No 4 No 8 No 10 No 16	Non- Cum Ø Ø	Cum. ල ර ර ර ර 1019	% Ret.	% Pass	ND Spec.
AASHTO CAND Pit Location Cwner Sampled From Date Sampled		9 5 4 75 2 36 2 00 1 18 600um	3/8° No 4 No 8 No 10 No 16 No 30 No 40	Non- Cum Ø Ø	Cum. ල ර ර ර ර 1019	% Ret.	% Pass	ND Spec.
AASHTO CAND Pit Location Dwner Sampled From Date Sampled Lab No	Field Sample No	9 5 4 75 2 36 2 00 1 18 600um 425um	3/ ₈ * No 4 No 8 No 10 No 16 No 30 No 40 No 50	Non- Cum 2 2 2 2 2 3 101 9 119 0	Cum Ø Ø Ø Ø	% Ret.	% Pass	ND Spec.
AASHTO	Field Sample No	9 5 4 75 2 36 2 00 1 18 600um 425um 300um	3/ ₈ * No 4 No 8 No 10 No 16 No 30 No 40 No 50	Non- Cum 2 2 2 2 2 101 a 119 0	Gum. Ø Ø // // // // // // // //	% Ret.	% Pass	ND Spec.
AASHTO SAND Pit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT	Field Sample No	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No.	3/ ₈ * No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm	Non- Gum Ø Ø 101 ° 114 5 81 9 30 %	Cum. Ø Ø // // // // // // // //	% Ret.	% Pass	ND Spec.
AASHTO CAND Pit Location Cwner Campled From Date Sampled ab No Soundness % Loss AASHT Specific Gravity	Freld Sample No - TO T-104 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No. Ongi	3/s* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm	Non- Cum	Cum. Ø Ø 1019 2209 13374 4193 4499	% Ret.	% Pass	ND Spec.
AASHTO SAND Pit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity AASH	Field Sample No	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No. Ongi	3/ ₈ * No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm	Non- Cum Ø Ø 101 9 119 0 114 5 81 9 30 6	Cum. Ø Ø 1019 2209 13374 4193 4499	% Ret.	% Pass	ND Spec.
AASHTO SAND Fit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity — AASH % Absorption —	Field Sample No TO T-104 Tested By TO T-34 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No. Origi	3/s* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm	Non- Cum	Cum Ø Ø 1019 2509 13374 4193 4499 44.36	% Ret.	% Pass	ND Spec. 20 - 50
AASHTO SAND Pit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity — AASH % Absorption — AASH	Freld Sample No - TO T-104 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Vinus No. Origi Wt Af Was Wt	3/8* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm nai Wt ter Wash th Loss Check	Non- Cum	Cum. Ø Ø 1019 2009 13374 4193 4499	% Ret.	% Pass	ND Spec. 20 - 50
AASHTO SAND Fit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity — AASH % Absorption — AASH Color —	Field Sample No TO T-104 Tested By TO T-34 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Vinus No. Origi Wt Af Was Wt	3/a* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm nai Wt ter Wash th Loss	Non- Cum	Cum Ø Ø 1019 2509 13374 4193 4499 44.36	% Ret.	% Pass	ND Spec.
AASHTO SAND Fit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss - AASHT Specific Gravity - AASH ** Absorption - AASH Color - AASH Wt. Loose Lb/c.! (K	Field Sample No TO T-104 Tested By TO T-34 Tested By TO T-34 Tested By TO T-31 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Vinus No. Origi Wt Af Was Wt	3/s* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm nai Wt ter Wash th Loss Check s Modulus	Non- Cum	Cum Ø Ø 1019 2509 13374 4193 4499 44.36	% Ret.	% Pass L1 6/21.1	ND Spec.
AASHTO SAND Pit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity — AASH % Absorption — AASH Color — AASH Wt. Loose Lb/c.! (K	Field Sample No TO T-104 Tested By TO T-34 Tested By TO T-34 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No. Crigi Wt Af Was Wt Finenes	3/s* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm nai Wt ter Wash th Loss Check s Modulus	Non- Cum	Cum Ø Ø 1019 2509 13374 4193 4499 44.36	% Ret.	% Pass % Pass % % % % % % % % %	ND Spec.
AASHTO SAND Pit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity — AASH % Absorption — AASH Color — AASH Wt. Loose Lb/c.! (K AASH % Moisture	Field Sample No TO T-104 Tested By TO T-34 Tested By TO T-34 Tested By TO T-31 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No. Crigi Wt Af Was Wt Finenes	3/s* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm nai Wt ter Wash th Loss Check s Modulus	Non- Cum	Cum Ø Ø 1019 2509 13374 4193 4499 44.36	% Ret.	% Pass % Pass % % % % % % % % %	ND Spec.
AASHTO SAND Fit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity — AASH % Absorption — AASH Color — AASH Wt. Loose Lb/c.! (K AASH % Moisture	Field Sample No TO T-104 Tested By TO T-34 Tested By TO T-34 Tested By TO T-31 Tested By TO T-11 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No. Crigi Wt Af Was Wt Finenes	3/s* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm nai Wt ter Wash th Loss Check s Modulus	Non- Cum	Cum Ø Ø 1019 2509 13374 4193 4499 44.36	% Ret. 38 4	% Pass % Pass % % % % % % % % %	ND Spec.
AASHTO SAND Fit Location Dwner Sampled From Date Sampled Lab No Soundness % Loss AASHT Specific Gravity — AASH % Absorption — AASH Color — AASH Wt. Loose Lb/c.! (K AASH % Moisture	Field Sample No TO T-104 Tested By TO T-34 Tested By TO T-34 Tested By TO T-31 Tested By TO T-11 Tested By	9 5 4 75 2 36 2 00 1 18 600um 425um 300um 150um 75um Minus No. Origi Wt Af Was Wt Finenes	3/s* No 4 No 8 No 10 No 16 No 30 No 40 No 50 No 100 No 200 200 (75µm nai Wt ter Wash th Loss Check s Modulus	Non- Cum 2 2 20 101 ° 114 ° 30 ° 30 ° 18 7 575 ° 443 ° 107 °	Cum Ø Ø 1019 2509 13374 4193 4499 44.36	% Ret.	% Pass % Pass % % % % % % % % %	ND Spec.

Distribution Central Office/Lab Oistrict Engineer Res Engineer

North Dakota State Highway Department CONCRETE PROPORTION DESIGN

PROJECT: NH-4-002(051)138

CONTRACTOR: INDUSTRIAL BUILDERS, INC.

TYPE OF WORK: STRUCTURE

DESIGN NO.: 4 DATE: 05/07/98 CLASS OF CONCRETE: AAE-3

TYPE & BRAND OF CEMENT:

SOURCES: Cement LAFARGE ; Sand GRAVEL PRODUCTS ; Rock GRAVEL PRODUCTS

SPECIFIC GRAVITIES:

Gc= 3.14 (Cement); Gfa= 2.57 (Flyash); Gs= 2.66 (Sand); Gr= 2.69 (Rock)*

*(Combine if two rock sizes)

PERCENT OF TOTAL AGGREGATE (by weight):

S= 38% Sand, Ra= 62 % Size 3 Rock; Rb= 0 % Size Rock

CALCULATIONS: (for 27 C.F. Batch Size)

	PROPORTIONS		LBS/BATCH		C.F.
CEMENT:	(941bs/Sack) x (6 5 Sacks/C Y) x (21 /27)		: 519.35	C=	2.65
LYASH:	Adjusted to 5 S Sacks/C Y for Flyash 20 % Flyash used		122.20	FA=	0.76
WATER:	<pre>(4 3 Gal/Sack) x {8 33} x 6 5 Sacks Cement/C (includes free moisture in aggregates)</pre>	Υ.	= 232.82	w =	3.73
AIR:	6 50 % (assumed entrained air in mix)		xxxxxx	A=	1.76
Drv Wt	Absolute Volu T = 3025.53	ве, Y,	of Total Aggragate	٧=	18.10
		ಸ 10 8	ravity of Total Aggr	egata	2.68
SAND, Dry	Wt.	=	1149.70	\$=	6.93
ROCK, Siz	e 3, Dry W .	Ξ	1875.83	R=	11.18
ROCK, Siz	e , Ory Wt.	=	0.00		
	TOTAL WEIGHT PER BATCH	=	3899.90	BATCH SIZE	= 27.00
					

CALCULATED UNIT WEIGHT = 144.44 lbs/C.F.

Wande 5 wen

MATERIAL TESTING SERVICES, INC.

P O Box 634 Minot ND 58702 (701) 852 5553

COMPRESSION TESTS OF CONCRETE CYLINDERS

P O Box 1093 Williston NO 58802 (701) 572-4226

OJECT

NH-4-002(051)138

DATE

October 12, 1998

REPORTED TO

North Dakota Department of Transportation

COPIES TO

PO Box 1396

Minot, North Dakota 58702

Laboratory Number 98-09	94				
FIELD DATA					
Job Identification	68	<u>-</u>			
Date Cast	9/14/98				
Age To Be Tested (days)	28				
Slump (if given)	2-3/4"				
Air Content (if given)	6 0%				
Unit Weight (if given)	145 8 lbs				
Location of Pour	Right bridge, deck a	ind approach slab	<u></u>		
Cylinders Submitted By	North Dakota Depar	rtment of Transports	ition		
CONCRETE MIX					
Specified Strength at 28 days crete Mix Proportions Cement Fine Aggregate Coarse Aggregate Admixture 1 2 3 Concrete Furnished by	AAE-3				
COMPRESSIVE STRENGTH		Test Method	- ASTM C 39, 6"	x 12" Cylinder	
Laboratory Number	126 4				
Date Received	9/15/98				
Days on Job and in Transfer	t				
Days Cured-ASTM C 192	27				
Days of Age at Test	28				
Gross Load at Failure (pounds)	130,000				
Compressive Strength (psi)	4590				
Compressive Strength (MPa)	317				

B-8

REMARKS

Material Testing Services, Inc.

 \mathcal{L}

0 8630	® 85.50	(B) 84.47	€ 85 92
@ 85.97	984.83	@ 86.32	23 85, 42
(3 85.40	(0) 84.35	Ø 86.07	20 24.85
9 84.79	@ 86 30	@ 85.55	25 84.48
	(286 or	(9) 84.85	② 86. 11
S 84.35	(3) 85.57	@84.50	® 85 70
(b) 86.33	(3) 84.87	2 86.17	ÉB 85.25
Q 86.04			29 84.79
	EAST BOUND	BRIDGE	® 84.51
	4 1	 	D 86.20
	=	}	
To /2/ Co/Dept Fax F	00		3 85 79
osl-H* Fax Note		Ø @ [+100N	3385.26
\$\frac{1}{2}\frac{1}{		Ļ	T 84.79
7671	6 0 0	G 6 +80 N	35) 84.56
]	<i>\</i>	
Date Fram Co	0 0 0	C. 3 +60N	
833	4	<u> </u>	
2-7-7 S Page 25 Page 2	600	_a(Mike, here are
100 P C 32 P C 3	4.	THON -	Por the bridges
		>	at Sullington
·	(a) (b) (c)	@ @ +20N	Wanter
	=	<u>}</u>	
		@ 60 E	
		Approach 5/c	5
		Approch sleb.	+ Bridge sout
		Ш	
	•	C-3	

B 8223 881.42 @81.50 080.26 6 80.84 981.93 381.94 (3 80.60 13 B1.28 Ø€Z.3& @ 82.01 (3 81.18 23 82. 48 @ 81.76 D 80.66 @ 81.70 @ 8/07 @ 82.2s @ B1.07 S 81.79 D 81.44 @ 82.31 13 81.59 6 80.47 Ø82. ₩ 28/01 (9) 82.11 080.81 29 82.54 WEST BOUND BRIDGE ® € Z & G 3)81.28 @ 8/67 3 8z.17 EP 8271 35 82 94 (ZZ) **6** *&* Approach 5/65 32 13 D Approach slot + Bridge Joint

C-4

N

		NH-4-05K(05)		Rest			
1 Heilman		[17]			6-23-03 Sunny m. 0/05		
T E E		78/2	o u o) I	A man land	The state of the s	
1741	8.33	68.0691			1692.40	2 M H 3 84.33	16-94
		k					1
	124.48	11.48	0258	85 70	86.11	0 77	
Pert/5/4/2 10.34	6.34	6.11	5,63	5,13	4.71	Dork / 10 15 11 59 3111 3141 303	
_	8/	6)	J	ଫ) (C		
	K W	13/164	8505	45.62	140.0%	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3
Slay Cour 6.48	87.9	81.01		5.X		8 3.35 3.43	
-							,
	84.34	94,67	85 2.8	85.80	66.03	82.36 82.34 8/37 BEST	~
, O.	87.9	615	5.54	5.03	L'AL	30/ 1187 1197 3.43 2186 133	
			_				
3 1 1 2 1	84.37	14.71	65.42	85.95	11 98	82.12 82.12 81.61 81.41 Backet	6
,04	6.45	6.11	5.39	4.87	1 4.63 E	7 201 200	- - -
		-					
	84.12	34.72	85.39	19589	84.20	82.02 81.41 80.13	3-
,09	4.50	10,10	5,43	4.93	4.63	3 30	
							-
	84.10	34.45	85.31	85.85	96.16	11.84 81.74 81.74 80.51 BAZES	10
80,	6.63	6.17	15.51	4.97	4. 66	108 PI 10 18 301	
		- 1					-
	84.07	34.60	85.17	רניבם	61.06	2	
,0g	6.75	66.9	5,65	5.05	4.76	164 48 641 676 GOC 1001	
					•		
BM#11 8.00	8.33					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>
	_			-			•
						Recorded 6-25-03 98-06-	3A. WB3
13 53 89		Joos data	. 83				
before		mud socking	3 slabs				

c-9

/	86.04	3/3//04 3/ 86.//
2	85.72	Harbaudh p 32 85.70
3	85.11	Dodgen \$ 33 85.23
4	84.60	Sunny, high 40's, wind 20-25 mph. 39 84.73
5	84.07	35 84.50
6	86.08	
7	85.79	
B	85 20	EAST BOUND BRIDGE
9	84.64	4 1
10	84.18	4 / /
//	86.18	
12	85.89	#100N
13	85.34	
14	84.69	G 6 +80 N
15	84.34	
16	86,22	(1) (2) (3) +60N
17	85.93	
18	85.42	6 0 6 A 6 HON
19	84.7 5	
20.	84.48	TO ED TO HEON
21	86.21	1 720%
22	85.98	
23	85.46	
24	84.75	- 1 1 1 1 1 1 5/a 5
25 26	84,51 86,05	
27	85.83	Approach slab + Bridge Joint
28	85.32	
29	84.72	C-10
30	84.47	

